Publikationen

Publikationen (seit 2022)

[1]
J. Abe?er, Z. Liang, and B. Seeber, “Sound Recurrence Analysis for Acoustic Scene Classification,” EURASIP Journal on audio, speech, and music processing, no. 1, pp. 1–15, 2025, doi: 10.1186/s13636-024-00390-2.

[2]
J. Abe?er, H. Lukashevich, S. Ziegler, and J. B?s, “Fortschritte in der automatischen Erkennung von Vogelstimmen,” Akustik Journal, no. 3, pp. 7–16, 2025.

[3]
H. Dilip and J. Abe?er, “A Three-Level Evaluation Protocoll for Acoustic Scene Understanding of Large Language Audio Models,” in Proceedings of the 10th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2025), October 2025, zenodo, 2025, pp. 185–189. doi: 10.5281/zenodo.17251589.

[4]
S. Grollmisch, R. Kumar, and J. Abe?er, “Semi-Supervised Learning for Acoustic Scene Classification using FixMatch,” in Proceedings of DAS/DAGA 2025: 51st Annual Meeting on Acoustics: March 17-20, 2025, Copenhagen, Berlin, 2025, pp. 109–111.

[5]
Y. He, A. Raake, and J. Abe?er, “Enhancing Multiscale Features for Efficient Acoustic Scene Classification with One-Dimensional Separate CNN,” in Proceedings of the 10th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2025), October 2025, Zenodo, 2025, pp. 125–129. doi: 10.5281/zenodo.17251589.

[6]
C. Lenk et al., “NeuroSensEar: Neuromorphic Acoustic Sensing for the High-Performance Hearing Aids of Tomorrow,” in Proceedings of DAS/DAGA 2025: 51st Annual Meeting on Acoustics: March 17-20, 2025, Copenhagen, Berlin, 2025, pp. 509–512. doi: 10.71568/dasdaga2025.523.

[7]
K. Apostolidis, J. Abe?er, L. Cuccovillo, and V. Mezaris, “Visual and Audio Scene Classification for Detecting Discrepancies in Video: A Baseline Method and Experimental Protocol,” in MAD ’24: Proceedings of the 3rd ACM International Workshop on Multimedia AI against Disinformation, Association for Computing Machinery: New York, NYUnited States, 2024, pp. 30–36. doi: 10.1145/3643491.3660287.

[8]
S. Grollmisch, J. Abe?er, and J. B?s, “Selbstüberwachtes Vortraining zur Verbesserung automatischer Audioklassifikationsalgorithmen,” in Fortschritte der Akustik - DAGA 2024'. Tagungsband - Proceedings: DAGA 2024 - 50. Jahrestagung für Akustik, 18.-21. M?rz 2024, Hannover, Berlin, 2024, pp. 1406–1409.

[9]
A. Latifi Bidarouni and J. Abe?er, “Towards Domain Shift in Location-Mismatch Scenarios for Bird Activity Detection,” in 32nd European Signal Processing Conference (EUSIPCO 2024): proceedings, Piscataway, NJ: IEEE, 2024, pp. 1267–1271. doi: 10.23919/EUSIPCO63174.2024.10715313.

[10]
P. Ngamthipwatthana, M. G?tze, A. Kátai, and J. Abe?er, “Towards Measuring and Forecasting Noise Exposure at the VELTINS-Arena in Gelsenkirchen, Germany,” in 2024 IEEE 5th International Symposium on the Internet of Sounds (IS2): proceedings, IEEE, 2024, pp. 137–144. doi: 10.1109/IS262782.2024.10704088.

[11]
J. Abe?er, S. Grollmisch, and M. Müller, “How Robust are Audio Embeddings for Polyphonic Sound Event Tagging?,” IEEE ACM transactions on audio, speech, and language processing, vol. 31, pp. 2658–2667, 2023, doi: 10.1109/taslp.2023.3293032.

[12]
J. Abe?er, A. Ullah, S. Ziegler, and S. Grollmisch, “Human and Machine Performance in Counting Sound Classes in Single-Channel Soundscapes,” Journal of the Audio Engineering Society, vol. 71, no. 12, pp. 860–872, 2023.

[13]
A. L. Bidarouni and J. Abe?er, “Unsupervised Feature-Space Domain Adaptation applied for Audio Classification,” in 4th International Symposium on the Internet of Sounds: Congress Center Le Benedettine, Pisa, 26-27 October 2023, IEEE, 2023, pp. 1–7. doi: 10.1109/ieeeconf59510.2023.10335455.

[14]
S. Grollmisch, E. Cano, H. Lukashevich, and J. Abe?er, “Uncertainty in Semi-Supervised Audio Classification: A Novel Extension for FixMatch,” in 31st European Signal Processing Conference (EUSIPCO 2024): proceedings, Piscataway, NJ: IEEE, 2023, pp. 161–165. doi: 10.23919/eusipco58844.2023.10289789.

[15]
H. Lukashevich, S. Grollmisch, and J. Abe?er, “Quantifying Uncertainty in Music Genre Classification,” in Tagungsband, DAGA 2023 - 49. Jahrestagung für Akustik: 06.-09. M?rz 2023, Hamburg, Berlin, 2023, pp. 1378–1381.

[16]
H. Lukashevich, S. Grollmisch, J. Abe?er, S. Stober, and J. B?s, “How Reliable are Posterior Class Probabilties in Automatic Music Classification?,” in AM ’23: Audio Mostly 2023, Edinburgh, United Kingdom, August 2023, ACM, 2023. doi: 10.1145/3616195.3616228.

[17]
J. Abe?er, “Classifying Sounds in Polyphonic Urban Sound Scenes,” in AES e-library, New York, NY: AES, 2022.

[18]
J. Abe?er, A. Loos, and P. Sharma, “Construction-sAIt: Multi-modal AI-driven technologies for construction site monitoring,” in Tagungsband, DAGA 2022 - 48. Jahrestagung für Akustik: 21.-24. M?rz 2022, Stuttgart und Online, Berlin, 2022, pp. 90–93.

[19]
J. Abe?er, X. Wang, S. B?nsch, C. Scherber, and H. Lukashevich, “Analyzing Bird and Bat Activity in Agricultural Environments using AI-driven Audio Monitoring,” in Fortschritte der Akustik - DAGA 2022: 48. Jahrestagung für Akustik, 21. - 24. M?rz 2022, Stuttgart und Online, Berlin, 2022, pp. 123–126.

[20]
S. Balke, J. Reck, C. Wei?, J. Abe?er, and M. Müller, “JSD: A Dataset for Structure Analysis in Jazz Music,” Transactions of the International Society for Music Information Retrieval / ISMIR, vol. 5, no. 1, pp. 156–172, 2022, doi: 10.5334/tismir.131.

[21]
N. Christon-Ragavan, M. Taenzer, and J. Abe?er, “Towards Interpreting and Improving the Latent Space for Musical Chord Recognition,” in Standing wave: ICMC 2022: International Computer Music Conference, University of Limerick, Ireland, 2022, San Francisco, California, USA: International Computer Music Association, Inc., 2022, pp. 74–79.

[22]
S. Gourishetti, S. Grollmisch, J. Abe?er, and J. Liebetrau, “Potentials and Challenges of AI-based Audio Analysis in Industrial Sound Analysis,” in Tagungsband, DAGA 2022 - 48. Jahrestagung für Akustik: 21.-24. M?rz 2022, Stuttgart und Online, Berlin, 2022, pp. 94–97.

[23]
S. Ribecky, H. Lukashevich, and J. Abe?er, “Multi-Input Architecture and Disentangled Representation Learning for Multi-Dimensional Modeling of Music Similarity,” in AES e-library, New York, NY: AES, 2022.

?ltere Publikationen

Eine vollst?ndige Liste von Publikationen findet sich unter https://jakobabesser.github.io/